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SUMMARY

This paper investigates mathematically the effect on the pitch-yaw
oscillations of a spinning re-entry body, which will arise as a conseguence
of the body having a small amount of asymmetry.

It shows how this effect can be related to sn equivalent re-entry

disturbance for a corresponding symmetrical body.

Some numerical checks, obtained on a digital calculating machine, are

included, as substantiation of the mathematical theory.
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1 INTRODUCTION

The oscillatory motion of a spinning body, descending through the earth's
atmosphere, has been the subject of a fair amount of theoretical research over
the last few years. The problem is to derive expressions, prefersbly reason-
ably simple ones, which will define the oscillatory motion in terms of two
groups of parameters.

(1) the body's inherent characteristics - mass, moments of inertia,
aerodynamic derivatives, etc.,

(2) the flight conditions at re-entry - velocity, spin rate, the
body's orientation, etc.

This is an important issue, because the oscillatory motion of a re-entry
body has various practical repercussions., It governs, for example, the magni-
tude of the leteral loading experienced by the body during descent and this may
be a critical design feature. It is also essential to have a theoretical
insight into this problem in order to evaluate flight data (e.g. accelerometer
recordings) obtained during a re-entry trial, as for exemple with Black Knight.

In Ref.1, the re-entry oscillation problem is treated more comprehensively,
so it is believed, than elsewhere. There are inevitably, hewever, various
additions and refinements which might in principle be made. One in particular
which has occasionally given rise to speculation, is what would happen if the
re-entry body were not quite symmetrical. Refe+1 assumes a perfectly symmetrical
body which is, of course, normally the designer's intention, but, in practice,
there may well be some departure from this. The present paper deals with the
problem of calculating the effect on the oscillatory motion which will result
from such asymmetry.

It is not difficult to see that this might well be important. Any
asymmetry in a spinring body will constitute a forcing input at the spin fre-
quency, this frequency being substantially constent throughout. The natural
frequency of the body's oscillations, however, increases steadily during re=-
entry (until a time shortly before ground level) due to the growth of the
dynamic pressure, %pvz,in the aerodynamic forces, Almost always this natural
frequency varies during descent from well below the spin rate to well above it.
The system passes, therefore, through a state of resonance. As is well known,
if a forcing condition at or near resonance of an oscillating system is main-
tained, large amplitudes of motion will ensue. The general issue which arises
in the present problem is to discover how the response of a forced oscillatory
system is modified by the continuous state of flux of some of the system's
parameters.

2 MATHEMATICAL DEFINITION OF THE PROBLEM

Asymmetry in a re-entry vehicle can teke different forms (Bafy Refa2)s
We are concerned here with aerodynamic asymmetry, that is to say a case in
which the roll inertial axis is inclined at a small angle (e) to the
aerodynamic axis. The moments of inertia in pitch and yaw are equal.

P
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We follow the same approach as in Ref.1, so that, as seen from in front
with small perturbations we have the situation:-

—- Perturbed traje.

r""\ o

51
-

N Basdle tral,

a . aerodynamic axis

i inertial axis

a,fp  components of incidence of inertial axis

v,f angular perturbation components of the trajectory

g,r angular rate components of inertial axis

€ angle between a and i

A roll moment of inertia

B pitch (or yaw) moment of inertia
m mass

B spin rate

The equations of angular motion of the inertial axis are:-

l—q+ ir - a- 1BJ 2pVSC [E:TF + seiPt:I (1)

i % 3 .
BQ+ir - i AP qrir = 1pvose [c \“‘ B+ ee"P“) £ C <q+ T+ isPelPt> ﬂ
q

www (2}

s
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These equations correspond to (7) end (8) in Ref.1, with the additional terms
in the aerodynamic forces arising from the asymmetry. We now eliminate q+ ir,
to obtein a differential equation in a- iB.

As is brought out in Ref.1, various terms appear which are quite
negligible in practice, Retaining only terms of numerioel significance, we
obtain:-

2
" ) Cp ec, o %pVZS€Cm b —;_-pvscL
= g S QU——( R T 36 st k| 2R L
a-1if + a=1ip 2pVS<m B> lB_J+a 1{3[ 3 13 = :I
—‘épvzsecm
a _iprt
= g e . (3)

This is the counterpart of equation (12) in Ref.1, the asymmetry appearing on
the right-hand side of the equation.

During a re-entry descent, the velocity is substantially constant until
the lower regions of the atmosphere are reached, whilst the air density builds
up exponentially with loss of height., TFor much of the desoent, therefore,

p tekes the form
Kt .
P = p,e (po, K are constants) .

Restricting the investigation to this case, in equation (3) we replace

o by P eKt
--‘gpv‘?sec
w2 = -——-—"EQ b wz eKt
- B v %
2

c c2cm
[—2 —""“ﬂ> by b a4

\ il B

b = %pVS

We then arrive at the differential equation

-5 -
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W2eKE | s AR (L ) EE | 2Rt IRt
0° T R a g% o
eoe (&)

This is the equation whose solution is required.

3 MATHEMATICAL SOLUTION OF THE PROBLEM

We make a change of variables

[e]
Tee®" I, o=ife Tiv e S N, vwhere VvV = %%

and we write A= % 3

Then equation (4) transforms, mathematicelly into

2 2 2 2

N g i’ 2 oAb S

i+ It - BT -z - W) n
ar K K K K

2
2 aoT
m . —_—
o T2+1(2X v) o X (5)

= e g e

K

3.1 Special case of no damping or 1lift

It will simplify the mathematical development of the solution of the
general equation if we consider first the special case in which there is
neither aerodynamic damping nor 1ift, namely the case in which the aerodynamic
forces on the body consist solely of a restoring moment. In this case, &, and

b are both zero and equation (5) becomes

2 2 a T 2 b} 241 (2)-v)
v &0 . 72 &3 o = (iv) n o= -¢ s PPN ERSY) (6)
ar® 4T K° K-

Now make the further substitution

G B
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in which case the equation becomes

5 o - -i(2\-v)
22 gﬁ% + 3 %E + [}2 = (iv)?—in = -¢ —Eg 22+1(2k—v). (7)
dz

If this differential oquation had zero on the right-hand side, it would,
of course, be of the standard Bessel's equation form, of order iv., As it is,
it can be identified as one of a mumber which have a close affinity with
Bessel's form and which, at some time, have received attention by
mathematicians. Equation (7) is of the form involving Lommel's functions.
(page 4O, Vol.2 Ref.3, or page 345, Ref.l.)

The complete solution of oquation (7) will inevitably involve arbitrary
amounts of the functions Jiv(z)’ J-iv(z)' However, let us look at a particular

solution, (equation (69), page 40, Vol.2, Ref.3)

2% ‘~21X+1v

Flmers )
no= o e(x Sisoiheat, SR e (8)

S1+21X-iv,i\;(z) is a Lommel function, z being the current variable. The other

quantities, which are constants, play a roll akin to the order in normal
Bessel's functions,

Lommel's functions (of this kind) are not tebulated anywhere, as far as
the present writer can discover, so that one cannot proceed by consulting
tables. However, some of their mathematical properties have been explored,
including how they behave for either small or large values of the argument, sz,
which properties are particularly useful in the present context.

By taking the same functional form of the solution (8) and considering
in turn its behaviour for small (z), large altitude and large (z), small altitude,
we can link the initial re-entry motion at very high altitude including a
determination of the arbitrary pre-entry motion, with the final stages of re-
entry motion at low altitude though being unable to analyse mathematically the
motion in between. We will therefore evaluate the two cases of low and high
z in turn.

3.4e1 Small values of z (large altitude)

Let us look first at small values of z, corresponding to the initiel
stages of the re-entry problem when the altitude is large.

-
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The 's' function can then be expanded in ascending powers of z.
Equation (8) then leads to

2 ~2id+iv (2+2iA-1y a2in-1v
e

2(1+ix-iv)(1+n) i 2‘*(1+ix-iv)(1+n)(2+ix-ix)(2+ix) ' :]

If we now write on =w, this reduces to

2 L
G )
Lap ol E : K "
SR = e (i+in=1v)(1+1x) ~ (A+in=1v)(1+in) (2+iN-1v)(2+iN) ~ *°*° |

ves(9)
21P
2iA K 3 : ;
The term T Ed = 8 represents simply a rotation at the spin rate, P,

It means that equation (9), with this term removed, gives the motion referred
to missile-fixed axes.

Employing a suffix, m, to indicate reference to missile axes, we have

! Gl

m =T F | TARI)(A4I8) T (AIR-iv) (F4an) (24in-1v) (2+10) T ] (10)

w, which is the natural frequency of the missile in pitch under aerodynemic
forces, gradually increases from zero during re-entry. Hence, the solution
we have arbitrarily chosen represents the case in which the missile's inertial
axis is lined up, initielly, with the flight direction, and commences its
movement away under the effect of the growing, asymmetric, aerodynamics.,

Equation (10) shows this in a typical case, to be of the following form:-

CONF IDENTTAL
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The first term in the bracket dominates initially. In the most common
case, A 1s much larger then either 1 or v,

In these circumstances,

- i 2~ - ¢

m

8

?) vy

S AR 4" 2
am 5 & s k1 +

. AN
showing that the response, on missile axes, starts off (for large \) at an

angle 2/\ to the vector defining the asymmetry.

3e1e2 Large values of z (low altitude)

Now we turn to the situation when z is large, corresponding to the
later stages of re-entry, when the altitude is much reduced.

We are dealing of course with the same solution, as defined by
cquativn (8). Now we wish to expand in descending powers of z.

To do this, we note that (equation 7, page 40, Ref.3)

(z) (z)

8142iA-1v,iv 5 e2iN-1v, iv

_p2in=iv (143N T(14id-iv)
sin imv

T M
cos 3 (1+21k-21v)J_iv(z)

- g (1+2ix)Jiv(z):] (11)

'S' is an alternative form of Lommel function, readily expandable in descending
powers, [ is the gemma function, J Bessel's function,

For large z,

8 (z) ~ 21V [, _ 2ih 2i0v)
1428A=1y,iv‘® 2 b
\F « [ alE = A% + 2 -iz + L B
g LE dmEn 1 k4 2 4 2

Jiv(z) ('RZ) cos <z e R -(-;;;)—1;2_ e + e :]

— . — iz - £ -iz + ix + 2=
J . (2)~ = sonlme S e BB o —"J—fg e b & 5% & S

-iv Rz L 2 (2ﬂz)2
R -
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When these expressions are substituted into (11), we obtain, after a
little algebraic simplification,

2iN-iv EM=v)
3442401y, 1y(2) ~ % E ey ]"
izZik-iv iz + % i <)\ - 12’> -iz + liﬂ -'n()\ --;-’
+ Sy T(44+i0) (1 +iN=1v) Le e + e e
(2rz)?

Thus from equation (8), and remembering that

u-iﬁ:Tiv'q, Z =

. 2 =
2iN P A
a=-3if ~ - €T [-1+ 2(1-—B>-J-
w
APt W x

1 V
NE /o 24A-1y h K()\ i 'i> " L, _)
= (%) (5%) D(14i0)T(1+1in-1v) | e o\ 'K T

%{—D etc., we obtain

s
b-t) -0y

san (43)

Equation (13) represents the situation which ensues at low altitudes.
The first term represents a vector which is locked to missile axes, and
rapidly shrinking onto -e. The remainder represents two vectors, rotating

at rates A‘z% *+ w in relation to space axes, and shrinking in inverse proportion
to W/-(D .

In general this is as far as the mathematical development can be taken,
and tables of gamma functions can be consulted for numerical values. However,
it frequently happens that A is much larger than 1 (or v) and in that case
approximations to the gamma functions can be made,

= o) =
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The standard approximation is:-

for large X, loger(x) ~ (X - %)logex -X 4+ 3 log 2x .
S -%75 + i[:)\(log)\-ﬂ--é‘i +ELJ
Thus, r(1+4n) ~ \’ZKX e

= I 3 E
P(144h-iv) ~ \/2%()\-\)) e" '2‘(7\-\)) + 1{_ (A-v) {log(rn=v)~1} = o ke TJ .

On substituting these expressions into equetion (13) we obtain, after a little
simplification,

o R
a-iﬁ~—elj+%<1-—>i_| J—E +
w
-n(2A-v) + i -2 L5, ) :‘.Pt>
e CE )y
where
¢ = N log 2h+ (A-v) log 2(A=v) = 2A+ v= W+— - (2x-v) log (%)

v (1hs)

The equations (14) define the orientation of the inertiesl axis at low
altitudes for large N (say >10), for the case in which this axis hed zero
displacement from the flight direction initially.

These expressions refer to space axes. Deletion of the terms elPt gives
am-iﬁm, the incidence in relation to missile axes.

342 General case including demping and 1ift

We return now to the more general case in which damping and 1ift terms
are retained, the appropriate differential equation being equation (5), end
seek a solution along similar lines to the classical mathematics of the abcve
special case.

=l =
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2
2a T
In the n term in that equation, (2) will always, in practice, be very
2 2 K
lowo’l‘
small in relation to 5> and will therefore be neglected.
K
We proceed with
2 L.wz 2ib -
2d 0 an o) o AP\ o2 _
Eoy ot et N it 2
ar K
a T2
iy ous(n ) T
2+i -
=.-g—oT Y (15)
K
and make the substitution,
Amz 2idb
<_q 9 j_&_Pj_) 2 g2
K2 K2 B
We then obtain
2.2 4
2 a Kz =
32(—1—71+z-@n+ £ - 2 -(i\’)z n
2 dz 2
dz 2 : AP
l'mo i 21bo B
o 2
-i(2A-v) 2 AP
2 N 2(4:» - 2ib_ =
o (_To> z2+i(2?\-v) . o o B (16)
to a sufficient accuracy.
a K
If we let ¢ = e this equation becomes,
2 an- 2ib AE
o B
- D
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% ~i(2\-v)

2 = . 2
ot Sl g 0, 22-Ac2z4 - (iv)2 N = -g(=—=—> 22+1(2k-v) i
2 dz K
dz
e 170
This is the counterpart to equation (7) in Section 3.1. The term
40224 in the coefficient of n is negligible, in a typical re-entry case, in

comparison with 2=, It is best retained, however, since it assists the
mathematical development.

30241 Ascending powers of z

Following the lines of Section 3.1, we seek first a solution in
ascending powers of z corresponding to Lommel's function, s. Denoting the
corresponding function by s, and writing p = 1+i(2\-v), we can devise

2
3 = o°° [}1zp+1 + a.szp'+3 + aszl~l+5 + ...{]

in which
. 1 " o 1+ Lo(u+2) h
d (p+1)2— (iv)2 ’ 5 [(p+1)2- (iv)2][p+3)2- (iv)2]
_— [+ he(u+2)1[1+ he(u+l)] : A,
? Te)®- (W) we3) %= () D0 (e5)* - (2)°)
o ~i(2\-v)
Lt n e 'S('T{'q> §1+217\—iv,iv(z) (18)

corresponding to the case in which the inertial axis is lined up initially
with the flight direction.

3.242 Descending powers of z

Here we seek a form of solution to equation (17) corresponding to
Lommel's function S. Denoting this by S, we can obtain

- 13 =
CONFIDENTIAL
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NLU

» 2 a a
S = ecz z“—1 [a. + + i + ...:I
0 24

Z

in which
PR ) S R [(u=1)2- (1v)2]
o 1+hcu ? 2 [1+hou JT1+he(p=~2) ]
2 AN 2 N2
35 - -1) =(iy - ={iy . s
b 1+bop ) [1+40(p=2) J[1+he(p-4 ? 2
20 -1(27\-\))
Bhue; i S 8(’5‘) Sy 42ih-iv, 1v( %)

providing a convenient form of solution for large z.

3.2.3 Complementary function

We require a suitasble form for the complementary function of equation (17),
i.e. the solution when the right-hand side is set to zero, and explore the
form

2
= %2 ey T2, o T,
n = 8.0 +8.2 b seee .

By substitution in (17), it is found that

r = +iy or r = =iy
8, arbitrary e arbitrary

a [1+4o(iv+1)] a [1+4o(~iv+1)]
"2 7 (iv+2)2- (iv)2 g (—iv+2)2- (-iv)2

a [1+he(iv+1) ][4+ ho(ive3)] a°[1 + 4o(=1v+1)1[1 + bo(-iv+3)]
) el )l e R o T R S a ) vy

etc. etc,
& ik =
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Thus, the two solutions of this form can be written

I3

A, e

1 g2 1V {1 i [1+.4c(iV+1)]Z [1+-AC(1V+1)1[1+-AC(*V+3)]Z E “.] (19)

22(iv+1) |1_ (1iv+1) (iv+2) 2

A e°Z2 Z'i"{1 [1+4c(-1v+1)]7 L se(=dven) ][4 + ho(=iv+3)]s* - } (20)

. 2 (-1V+1) i 4(-1v+1)(-1v+2) |2

where A1 and A2 are arbitrary constants.

As in the standard Bessel case (corresponding to ¢ = 0), we take

1 1
Ay = mmem——f = . (cfe Refal,peli0)
1 v I(iv+t) 2 e T(-iv+1)

2L

Now, in re-entry applications the quantity ¢ is quite small, and also ¢“z' is

always quite small in relation to z”. Thus for the range of 2z in which we are
interested, equation (17) with the right-hend side set to zero is sensibly
equivalent to the standard Bessel form of order iv, and the complementary
function solutions found can be identified for our purpose as Ji (z) and

J—i (2z) respectively.

3.2:4 Complete solution

The solution in which we are interested is as given by equation (18)
since this corresponds to zero initial displacement. We require now to
express s in terms of § and the complementary function J, iy and J-iv' This

will be the counterpart in the more general case to equation (11) in the
special case, and will enable an asymptotic value to the solution to be found.
This in turn will be used to explore what happens to the motion in the later
stages of re-entry.

It is a matter of algebra to show that there is an analogous relation
to equation (11), viz:-

=45 =
CON¥ IDENTIAL
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51+2n—1u,iu(‘"‘) 0 31+2ix-iu,iu(z)

1 1 iv
221X-iv r(1+ix!P!1+ik‘iV) b <80+ 2 2

i
b : cos = (1+ 2in-2iv) J_, (z)
sin imv l_(-g—cq- %+ iA- i!)J (80)1+17\ 2 iy

2
JENERET
_I<80+2+2

(80)1+ix-iv

cos th- (1+24)) Jiv(z) (21)

-

where expression (19) and (20) are used for Jiv( z), J—iv(z) in this case.

As in Section 3.1.2, in order to proceed further with the mathematical
development it is necessary to approximate to the gamma functions. This is
quite feasible, since in practice, 'c' is quite small and 1/c quite large.

Using the standard approximation for the I'-function of a large quantity,
it is straightforward to show that for Y large, and much larger than z

Y ]

2 n
Y-2e 4 ig (log 2 - -1—>
I(T+iz) ~ ¥ f-% a ek 2

By meking use of this formula, it can be demonstrated that

v -1— l ...i'.!) 3 "1_1_ 1 iv\

1&80*2 2 1 b G 1
W PR T O R R v T+ir-1v
I<80+2+1)‘ 2> (8c) 2 80+2+i)\— 2) (8¢)

a K
3”9; [IAMA=v) + i(=2n+v)]

~ a .
Also from Section 3.2.2, we have, for large gz,

2 2 R
3 (z) 6CZ zp—1 1 ” =1 - (iv A + 0 b1
1+2iA-iv,1iv ~ 1+hop 1+hop il 1+he(p=2)] 2 ot

0
2w2
0

e aK 1iaK
o OB 21(27‘-“) PRk e A -2, 20
o0 2 2
2 2

L 6=
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Hence, [c.f. equation (12), Section 3e162]

B . A(2A-v) [ l%K< iy _> 5.__(1»-_\:_1

S4+2iN=1v,iv > ; s
o
i(2k—v) "2 [A(A-v)+i(-2n4v) ]
4 -""'T"' T(A+N)D(1+iN-1v) e P y
(2rz)?

x[elz+— 7:<x-—) -iz+ -q:<x--2->] .

Recalling that

=

1l

1

m

|
SN

[¢:]

ml\)
(]
N
1
L
€
N
]
\®)
‘...l
(<2
ok
H
N

end using approximations to the functions I'(1+iA), I'(1+iA-iv) as in Section
36142 we can find the asympotic value of a=-ipf corresponding to late stages of
re~entry,

This comes out to be

- a b a 2
g K{ __o 0 ek o _y P _A iPt
a~ip ~ - ¢ Lj %5 { 5+ "5 v (X 2) - 5 (x 2) } e (1 B>:]e
(.l)o (.00 wo w

aoKX(X-v)
2w

=t 2 a bv
\/ﬂKM)»-v} A X |: 7 e (K * 4’)
+ £ ® e e e

by ., 2m ™
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where ¢ = Nlog 2 + (A=v) log 2(A=v) =« 2\ + v -

S,
22 2(A-v 4
b Kv

a K
- (2a=v) log (—%’-) 4 -9-2- (~2n4v) + °2 : (24)
2wo 8w

This is the mathematical solution of the problem, subject to certain
restrictions on the size of some of the quantities involved (see Section 4).
It is the more general form of equation (14), the effect of damping and lift
introducing the extra terms in a, b, 8y bo'

4 PRACTICAL IMPLICATIONS

We have found [equations (23), (24)] the angular motion of an asymmetric
spinning body, occurring at low altitudes, as a consequence of its inherent
asymmetry. As appears later in this paragraph, this is the most suitable form
for an appraisal of the practical implications of asymmetry. For equations
(23) and (24) to be valid, two conditions must be satisfied:-

a b

(a) demping and 1ift must be relatively small, i.e. —% ; —% must be
w )
° )

small, in comparison with unity,

(v) R.(%) must be large in comparison with unity.

For all typical re-entry cases, the former condition, (a), is well satisfied.
For condition (b), it is sufficient if A is greater than about 10, and this
is frequently the case in re-entry applications. If it should happen that A
is much less than this, it would be necessary to go back to equation (22) and
evaluate the I'-functions from suitable tables.

The effect of asymmetry, as per equation (23), consists, in the later
stages of re-entry, of two parts

(1) a steady displacement of the inertial axis of amount
K i bov Y ao Y B
LR EE 309
%) ) ) #
o o

in relation to missile axes.

lo

oN

This is approximately equal and opposite to the aerodynamic asymmetry.

(2) a motion consisting of two rotating vectors of exactly the same
type as the normal symmetrical missile undergoes.

=8k =
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If ¢ is small, as is supposed, then constituent (1) is also small. Interest,
in practice, centres on constituent (2). Of this the component vector which
rotates in the same sense as the missile spins will be much larger than the

counter rotating vector, since the latter involves the factor e-ﬂ(z}‘-v).

The feature of principal interest, therefore, is the vector

<V
aom(x )

2 a by 20
BaGy) | o 2K+2w+i<K+¢>
w L]

Now, it is shown in Ref.41, that if a symmetrical missile has a simple
precessional motion of magnitude SE, prior to re-entry, then its motion during

re-entry will be given by

20
+

q A_r;e"éﬁ*ﬁ”(i' "’>
B 2Bw =

These two expressions are of the same form. Hence, by equating them,
we can express the effect of asymmetry in terms of an equivelent motion, prior
to re-entry for a symmetrical missile

aom(x-v)
2
2w

AR o |

S /2]3 = € e \j?tK)\(X-v)
aoxx(x-v)
S 2,
Therefore B e 8 - 270‘ . (25)

For this relationship to be velid, the further condition that v must not
be less than about unity must be satisfieds This is usually so in practice.

Rewritten in terms of basic design parameters equation (25) becomes

&P2(0’2CL o ) (1 - A/B)
a q

2KV.

C
S E™m
B a 2R .
= = e \[Z‘K % (A 1> '(26)

s i
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where

CL ,.Cm 5 Cm = aerodynamic derivatives of 1lift, pitch demping, and static
a q a pitching moment

£ = reference length

o = non-dimensional radius of gyration in pitch, i.e. ratio of

pitch radius of gyration to reference length

P = s8pin rate

A,B = moments of inertia of re-entry missile in roll, pitch

VE = re-entry velocity

K given by air density variation, p =poeKt

1> = asymmetry in missile

SE = equivalent re-entry perturbation for symmetrical missile

Equation (26) is the principal practical result of the present enquiry.
It defines the situation in which the missile finds itself after passing
through resonance, and expresses it in terms of the equivalent re-entry dis-
turbance for a symmetrical body.

It is interesting to note that the presence of damping (and 1ift) in
the re-entry missile increases the magnification factor (as defined). For
positive 1if't, pitch damping, and static pitching moment, CL is positive,

a
C, end C_ negative, so that the exponential term in (26) consists of 'e' to
a
a positive power, and this is, of course, greater than 1.
It will usually be the case, however, that the exponent of 'e' will be
fairly small - a value of 0¢1 to 0°2 would be typical of ocurrent design

practice - so that the contribution of the exponential term in (26) will
frequently not be very important.

The main effect will generslly come from the remaining term in equation

(26), namely |2x 2(E. « In current designs this tends to be of the order
K\A

of 30 to 40. This means, therefore, that if such a re-entry missile is asym-
metric to the extent of 1° angular difference between the aerodynamic and
inertial axes and it has no precession, the effect on the incidence in the
later re-entry stages is the same as if the missile were symmetric but had a
re-entry incidence in the form of a precession of 30° to 40° semi-angle

round the flight path.

S
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5 NUMERICAL CHECK ON THEQRETICAL RESULTS

It was considered desirasble to check the validity of the foregoing
theoretical analysis for one or two particular cases. For this purpose, a
digital calculating machine was programmed to solve the basic differential
equation, (4). There is one minor difficulty which had to be overcome = not
in the programming as such, but in fleeding in appropriate initial conditions.
The mathematical solution corresponds to initial conditions

a=-ifp = a-ip = O at t = -,

To overcome this, values for a- iff, a- ip were calculated for a later time,
appropriate to the very early stages of re-entry, from the expression for
s (or 8), and the digital calculation proceeded from there.

Fige1 shows the digital machine output for three particular cases, with
progressively increasing damping. For each of them

P=20, K=1, A/B=0.

The damping corresponds to

|
N
I
o
8|m
O Mo
i
1
E-:Ic'
o Njo
u
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o Njo
[
8'0“
o nolo
[
Nl"
-

the 1ift coefficient being zero in each case.

The first one is the case of zero dampings The other two are equivalent
to rather more damping than current re-entry designs normally possess, but it
was desired to accentuate the effect.

The mathematical solution, as per equations (23), (24), was checked
against the digital machine results. The sgreement is virtually perfect for
w/P greater than 15, and is still very good for w/P as low as 1°+3.

Other cases were subjected to the same check, with different values of
A/B and damping and lift. They present the same general appearance, and
confirmation of the methematical theory.

6 CONCLUSION
A mathematical solution, in convenient form, has been derived for the

effect on the angular disturbance of a spinning re~entry missile, which will
result from its having a small amount of asymmetry.

- -
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The solution is readily applicable in practice, since in the post-

resonence region on which interest usually centres, the effect is simply
related to the case of the corresponding symmetrical missile.

NOTATION
A,B moments of inertia in roll and pitch (or yaw)
a,b parameters defining damping and 1lift, Section 2
c paremeter relating, inter alia, demping, 1ift and frequency
K paremeter defining variation of sir density with time, p =p_ et
Y/ aerodynamic reference length
m mass
P spin rate
q,r pitch, yaw angular rates
S aerodynamic reference area
5,8
} Lommel functions (usually with two suffixes)

S,3

Kt
T 62
t time
v re-entry velocity
CL ’Cm ,Cm aerodynamic derivatives

a a g

a,p missile incidence components
¥s0 trajectory deflection angular components
€ missile asymmetry

P
2 K
B 1 + i(2n-v)
) AP

BK

- 02 e
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NOTATION (CONTD)

p air density
w parameter defining frequency, Section 2
Suffix
0 condition at t = 0
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